1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
| import pandas as pd import os
def read_xlsx(file_path): """ Read an Excel file and return a DataFrame. """ if os.path.exists(file_path): df = pd.read_excel(file_path) return df else: raise FileNotFoundError(f"The file {file_path} does not exist.")
def first_processing(df, t_begin_col, t_end_col, data_col): """ INPUT: pandas.DataFrame, t_begin_col, t_end_col, data_col OUTPUT: pandas.DataFrame """ df[t_begin_col] = pd.to_datetime(df[t_begin_col]) df[t_end_col] = pd.to_datetime(df[t_end_col])
df = df[df[t_begin_col] <= df[t_end_col]].copy()
global_begin = df[t_begin_col].min() global_end = df[t_end_col].max()
full_range = pd.date_range(start=global_begin, end=global_end, freq='h')
mapping = {} for _, row in df.iterrows(): start = row[t_begin_col] end = row[t_end_col] value = row[data_col] if end - start == pd.Timedelta(hours=1): mapping[start] = value
new_rows = [] for ts in full_range: new_rows.append({t_begin_col: ts, data_col: mapping.get(ts, 0),"type": 1 if ts in mapping else 0})
new_df = pd.DataFrame(new_rows) return new_df
def further_processing(df, t_begin_col, t_end_col, data_col, target_df, type_val): """ INPUT: pandas.DataFrame, t_begin_col, t_end_col, data_col, target_df, type_val OUTPUT: pandas.DataFrame """
interval = pd.Timedelta(hours=type_val)
filtered_df = df[(df[t_end_col] - df[t_begin_col] == interval)].drop_duplicates( subset=[t_begin_col, t_end_col, data_col])
for _, row in filtered_df.iterrows(): current_time = row[t_begin_col] selected_value = row[data_col] period_start = current_time period_end = current_time + interval
mask = (target_df[t_begin_col] >= period_start) & (target_df[t_begin_col] < period_end) sub_df = target_df.loc[mask]
existing_nonzero_sum = sub_df[sub_df[data_col] != 0][data_col].sum()
remain_value = selected_value - existing_nonzero_sum
if remain_value > 0:
empty_mask = sub_df[data_col] == 0 empty_count = empty_mask.sum() if empty_count > 0: average_val = remain_value / empty_count target_df.loc[mask & empty_mask, data_col] = average_val target_df.loc[mask & empty_mask, "type"] = type_val return target_df
def prep_extract(df,prep0,time,excel_name): """ INPUT: pandas.DataFrame, prep0,time,excel_name OUTPUT: Excel file with sequences of rainfall """
results = [] current_sequence = [] current_type = None
for index, row in df.iterrows(): if row['prep'] > prep0: current_sequence.append(row) else: if len(current_sequence) >= time: results.append((current_sequence, current_type)) current_sequence = []
if len(current_sequence) >= time: results.append((current_sequence, current_type))
with pd.ExcelWriter(excel_name) as writer: for i, (sequence, seq_type) in enumerate(results): sequence_df = pd.DataFrame(sequence) sequence_df.to_excel(writer, sheet_name=f"Seq_{i+1}", index=False)
if __name__ == "__main__":
file_path = 'data.xlsx' df = pd.read_excel(file_path)
t_begin_col = 'begin' t_end_col = 'end' data_col = 'prep' types=[2,3,4,5,6,7,8,9,10,11,12,13,14,15]
hourly_df = first_processing(df, t_begin_col, t_end_col, data_col) for i in types: hourly_df = further_processing(df, t_begin_col, t_end_col, data_col, hourly_df, i) hourly_df.to_excel('hourly.xlsx', index=False) prep_extract(hourly_df,2,5,'prep_extract.xlsx') print(hourly_df)
|